
Parallel Programming Parallel Programming 
& Cluster Computing& Cluster Computing

Stupid Compiler TricksStupid Compiler Tricks
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College
Andrew Fitz Gibbon, Earlham College

Josh Alexander, University of Oklahoma
Oklahoma Supercomputing Symposium 2009
University of Oklahoma, Tuesday October 6 2009



2
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Outline
Dependency Analysis

What is Dependency Analysis?
Control Dependencies
Data Dependencies

Stupid Compiler Tricks
Tricks the Compiler Plays
Tricks You Play With the Compiler
Profiling



Dependency Analysis



4
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

What Is Dependency Analysis?
Dependency analysis describes of how different parts of a 

program affect one another, and how various parts require 
other parts in order to operate correctly.

A control dependency governs how different sequences of 
instructions affect each other.

A data dependency governs how different pieces of data affect 
each other.

Much of this discussion is from references [1] and [6].



5
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Control Dependencies
Every program has a well-defined flow of control that moves 

from instruction to instruction to instruction.
This flow can be affected by several kinds of operations:

Loops
Branches (if, select case/switch)
Function/subroutine calls
I/O (typically implemented as calls)

Dependencies affect parallelization!



6
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Branch Dependency (F90)
y = 7
IF (x /= 0) THEN

y = 1.0 / x
END IF
Note that (x /= 0) means “x not equal to zero.”
The value of y depends on what the condition (x /= 0)

evaluates to:
If the condition (x /= 0) evaluates to .TRUE., 
then y is set to 1.0 / x. (1 divided by x).
Otherwise, y remains 7.



7
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Branch Dependency (C)
y = 7;
if (x != 0) {

y = 1.0 / x;
}
Note that (x != 0) means “x not equal to zero.”
The value of y depends on what the condition (x != 0)

evaluates to:
If the condition (x != 0) evaluates to true, then 
y is set to 1.0 / x (1 divided by x).
Otherwise, y remains 7.



8
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Carried Dependency (F90)
DO i = 2, length
a(i) = a(i-1) + b(i)

END DO
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has 

completed, so this loop can’t be parallelized. 



9
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Carried Dependency (C)
for (i = 1; i < length; i++) {
a[i] = a[i-1] + b[i];

}
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has 

completed, so this loop can’t be parallelized. 



10
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Why Do We Care?
Loops are the favorite control structures of High Performance 

Computing, because compilers know how to optimize their 
performance using instruction-level parallelism:  
superscalar, pipelining and vectorization can give excellent 
speedup.

Loop carried dependencies affect whether a loop can be 
parallelized, and how much.



11
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop or Branch Dependency? (F)
Is this a loop carried dependency or a

branch dependency?

DO i = 1, length
IF (x(i) /= 0) THEN
y(i) = 1.0 / x(i)

END IF
END DO



12
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop or Branch Dependency? (C)
Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {
if (x[i] != 0) {
y[i] = 1.0 / x[i];

}
}



13
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Call Dependency Example (F90)
x = 5
y = myfunction(7)
z = 22
The flow of the program is interrupted by the call to 
myfunction, which takes the execution to somewhere 
else in the program.

It’s similar to a branch dependency.



14
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Call Dependency Example (C)
x = 5;
y = myfunction(7);
z = 22;
The flow of the program is interrupted by the call to 
myfunction, which takes the execution to somewhere 
else in the program.

It’s similar to a branch dependency.



15
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

I/O Dependency (F90)
x = a + b
PRINT *, x
y = c + d

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.



16
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

I/O Dependency (C)
x = a + b;
printf("%f", x);
y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.



17
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Reductions Aren’t Dependencies
array_sum = 0
DO i = 1, length
array_sum = array_sum + array(i)

END DO
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions:  product, .AND., .OR., minimum, 

maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.



18
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Reductions Aren’t Dependencies
array_sum = 0;
for (i = 0; i < length; i++) {
array_sum = array_sum + array[i];

}
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions:  product, &&, ||, minimum, 

maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.



19
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Data Dependencies
“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 
moved before the earlier instruction [or executed in 
parallel].” [7]

a = x + y + cos(z);
b = a * c;
The value of  b depends on the value of a, so these two 

statements must be executed in order.



20
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Output Dependencies
x = a / b;
y = x + 2;
x = d – e;

Notice that x is assigned two different values, but 
only one of them is retained after these statements 
are done executing.  In this context, the final value 
of x is the “output.”

Again, we are forced to execute in order.



21
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Why Does Order Matter?
Dependencies can affect whether we can execute a 
particular part of the program in parallel.
If we cannot execute that part of the program in parallel, 
then it’ll be SLOWSLOW. 



22
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Dependency Example
if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {
for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {
for (index = 1; index < length; index++) {

dst[index = src1[index-1] + src1[index];
}

}
else {
for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src2[index];
}

}



23
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

The various versions of the loop either:
do      have loop carried dependencies, or
don’t have loop carried dependencies.



24
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Dependency Performance
Loop Carried Dependency Performance

0

20

40

60

80

100

120

140

160

180

200

dst=
src

1+
src

2
dst=

src
1+

src
1

dst=
dst+

src
2

dst=
src

1+
dst

dst=
dst+

dst

M
FL

O
Ps Pentium3 500 MHz

POWER4
Pentium4 2GHz
EM64T 3.2 GHz

Better



Stupid Compiler 
Tricks



26
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Stupid Compiler Tricks
Tricks Compilers Play

Scalar Optimizations
Loop Optimizations
Inlining

Tricks You Can Play with Compilers
Profiling
Hardware counters



27
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Compiler Design
The people who design compilers have a lot of experience 

working with the languages commonly used in High 
Performance Computing:

Fortran: 50ish years
C:          40ish years
C++:     20ish years, plus C experience

So, they’ve come up with clever ways to make programs 
run faster.



Tricks Compilers Play



29
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Scalar Optimizations
Copy Propagation
Constant Folding
Dead Code Removal
Strength Reduction
Common Subexpression Elimination
Variable Renaming
Loop Optimizations

Not every compiler does all of these, so it sometimes can be 
worth doing these by hand.

Much of this discussion is from [2] and [6].



30
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Copy Propagation
x = y
z = 1 + x

x = y
z = 1 + y

No data dependency

Has data dependency

Compile

Before

After



31
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Constant Folding

add = 100
aug = 200
sum = add + aug

Notice that sum is actually the sum of two constants, so the 
compiler can precalculate it, eliminating the addition that 
otherwise would be performed at runtime.

sum = 300

Before After



32
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Dead Code Removal (F90)

var = 5
PRINT *, var
STOP
PRINT *, var * 2

Since the last statement never executes, the compiler can 
eliminate it.

var = 5
PRINT *, var
STOP

Before After



33
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Dead Code Removal (C)

var = 5;
printf("%d", var);
exit(-1);
printf("%d", var * 2);

Since the last statement never executes, the compiler can 
eliminate it.

var = 5;
printf("%d", var);
exit(-1);

Before After



34
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Strength Reduction (F90)

x = y ** 2.0
a = c / 2.0

x = y * y
a = c * 0.5

Before After

Raising one value to the power of another, or 
dividing, is more expensive than multiplying.  If the 
compiler can tell that the power is a small integer, or 
that the denominator is a constant, it’ll use 
multiplication instead.
Note: In Fortran, “y ** 2.0” means “y to the 
power 2.”



35
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Strength Reduction (C)

x = pow(y, 2.0);
a = c / 2.0;

x = y * y;
a = c * 0.5;

Before After

Raising one value to the power of another, or 
dividing, is more expensive than multiplying.  If the 
compiler can tell that the power is a small integer, or 
that the denominator is a constant, it’ll use 
multiplication instead.
Note: In C, “pow(y, 2.0)” means “y to the   
power 2.”



36
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Common Subexpression Elimination

d = c * (a / b)
e = (a / b) * 2.0

adivb = a / b
d = c * adivb
e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both 
assignment statements, so there’s no point in 
calculating it twice.
This is typically only worth doing if the common 
subexpression is expensive to calculate.



37
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Variable Renaming

x = y * z
q = r + x * 2
x = a + b

x0 = y * z
q = r + x0 * 2
x = a + b

Before After

The original code has an output dependency, while 
the new code doesn’t – but the final value of x is 
still correct.



38
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Optimizations
Hoisting Loop Invariant Code
Unswitching
Iteration Peeling
Index Set Splitting
Loop Interchange
Unrolling
Loop Fusion
Loop Fission

Not every compiler does all of these, so it sometimes can be 
worth doing some of these by hand.

Much of this discussion is from [3] and [6].



39
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Hoisting Loop Invariant Code
DO i = 1, n
a(i) = b(i) + c * d
e = g(n)

END DO

Before

temp = c * d
DO i = 1, n
a(i) = b(i) + temp

END DO
e = g(n)

After

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over.



40
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Unswitching
DO i = 1, n
DO j = 2, n
IF (t(i) > 0) THEN
a(i,j) = a(i,j) * t(i) + b(j)

ELSE
a(i,j) = 0.0

END IF
END DO

END DO
DO i = 1, n
IF (t(i) > 0) THEN
DO j = 2, n
a(i,j) = a(i,j) * t(i) + b(j)

END DO
ELSE
DO j = 2, n
a(i,j) = 0.0

END DO
END IF

END DO

Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.



41
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Iteration Peeling
DO i = 1, n

IF ((i == 1) .OR. (i == n)) THEN
x(i) = y(i)

ELSE
x(i) = y(i + 1) + y(i – 1)

END IF
END DO

x(1) = y(1)
DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)
END DO
x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.



42
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Index Set Splitting
DO i = 1, n

a(i) = b(i) + c(i)
IF (i > 10) THEN

d(i) = a(i) + b(i – 10)
END IF

END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n

a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO

Before

After

Note that this is a generalization of peeling.



43
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Interchange

DO i = 1, ni
DO j = 1, nj

a(i,j) = b(i,j)
END DO

END DO

DO j = 1, nj
DO i = 1, ni
a(i,j) = b(i,j)

END DO
END DO

Array elements a(i,j) and a(i+1,j) are near 
each other in memory, while a(i,j+1) may be 
far, so it makes sense to make the i loop be the 
inner loop. (This is reversed in C, C++ and Java.)

Before After



44
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Unrolling
DO i = 1, n
a(i) = a(i)+b(i)

END DO

DO i = 1, n, 4
a(i)   = a(i)  +b(i)
a(i+1) = a(i+1)+b(i+1)
a(i+2) = a(i+2)+b(i+2)
a(i+3) = a(i+3)+b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.



45
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets 

better performance (up to some point), especially if there 
are lots of arithmetic operations but few main memory 
loads and stores.

Unrolling creates multiple operations that typically load from 
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing 
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the 
loop counter variable, and the number of branches to the 
top of the loop.



46
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Fusion
DO i = 1, n
a(i) = b(i) + 1

END DO
DO i = 1, n
c(i) = a(i) / 2

END DO
DO i = 1, n
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer 
total memory references.

Before

After



47
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Loop Fission
DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1

END DO
DO i = 1, n
c(i) = a(i) / 2

END DO
DO i = 1, n
d(i) = 1 / c(i)

END DO

Fission reduces the cache footprint and the number of 
operations per iteration.

Before

After



48
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

To Fuse or to Fizz?
The question of when to perform fusion versus when to 

perform fission, like many many optimization questions, is 
highly dependent on the application, the platform and a lot 
of other issues that get very, very complicated.

Compilers don’t always make the right choices.
That’s why it’s important to examine the actual behavior of the 

executable.



49
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Inlining

DO i = 1, n
a(i) = func(i)

END DO
…
REAL FUNCTION func (x)
…
func = x * 3

END FUNCTION func

DO i = 1, n
a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents 
are transferred directly into the calling routine, 
eliminating the overhead of making the call.



Tricks You Can Play 
with Compilers



51
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

The Joy of Compiler Options
Every compiler has a different set of options that you can set.
Among these are options that control single processor 

optimization:  superscalar, pipelining, vectorization, scalar 
optimizations, loop optimizations, inlining and so on.



52
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Example Compile Lines
IBM XL

xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

Intel
ifort –O –march=core2 –mtune=core2

Portland Group f90
pgf90 –O3 -fastsse –tp core2-64

NAG f95
f95 –O4 –Ounsafe –ieee=nonstd



53
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

What Does the Compiler Do? #1
Example: NAG f95 compiler [4]

f95 –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3, -O4:

-O0    No optimisation. …
-O1    Minimal quick optimisation.
-O2    Normal optimisation.
-O3    Further optimisation.
-O4    Maximal optimisation.

The man page is pretty cryptic.



54
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

What Does the Compiler Do? #2
Example: Intel ifort compiler [5]

ifort –O<level> source.f90
Possible levels are  –O0, -O1, -O2, -O3:
-O0    Disables all -O<n> optimizations. …
-O1    ... [E]nables optimizations for speed. …
-O2    …
Inlining of intrinsics.
Intra-file interprocedural optimizations, which include: 
inlining, constant propagation, forward substitution, routine 
attribute propagation, variable address-taken analysis, dead 
static function elimination, and removal of unreferenced 
variables.
-O3    Enables -O2 optimizations plus more aggressive 
optimizations, such as prefetching, scalar replacement, and  
loop  transformations. Enables optimizations for maximum 
speed, but does not guarantee higher performance unless loop 
and memory access transformations take place. …



55
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Arithmetic Operation Speeds
Ordered Arithmetic Operations

0

100

200

300

400

500

600

ra
dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g i2
r

r2
i

M
FL

O
P/

s

Intel/Xeon PGI/Xeon NAG/Xeon xl/POWER4

Better



56
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Optimization Performance

 Performance

0
10
20
30
40
50
60
70
80
ra

dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rd
iv

id
iv

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better



57
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

More Optimized Performance

Performance

0

50

100

150

200

250
rm

am

im
am

rm
ad

im
ad rd
ot

re
uc

rlo
t8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

rlo
t2

4

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG 04
Pentium3 VAST no opt Pentium3 VAST opt

Better



Profiling



59
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Profiling
Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

Subroutine profiling
Hardware timing



60
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Subroutine Profiling
Subroutine profiling means finding out how much time is 

spent in each routine.
The 90-10 Rule: Typically, a program spends 90% of its 

runtime in 10% of the code.
Subroutine profiling tells you what parts of the program to 

spend time optimizing and what parts you can ignore.
Specifically, at regular intervals (e.g., every millisecond), the 

program takes note of what instruction it’s currently on.



61
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Profiling Example
On GNU compilers systems:
gcc –O –g -pg …

The –g -pg options tell the compiler to set the executable up 
to collect profiling information.

Running the executable generates a file named gmon.out, 
which contains the profiling information.



62
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Profiling Example (cont’d)
When the run has completed, a file named gmon.out has 

been generated.
Then:
gprof executable

produces a list of all of the routines and how much time was 
spent in each.



63
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

Profiling Result
%   cumulative   self              self     total
time   seconds   seconds    calls  ms/call  ms/call  name
27.6      52.72    52.72   480000     0.11     0.11  longwave_ [5]
24.3      99.06    46.35      897    51.67    51.67  mpdata3_ [8]
7.9     114.19    15.13      300    50.43    50.43  turb_ [9]
7.2     127.94    13.75      299    45.98    45.98  turb_scalar_ [10]
4.7     136.91     8.96      300    29.88    29.88  advect2_z_ [12]
4.1     144.79     7.88      300    26.27    31.52  cloud_ [11]
3.9     152.22     7.43      300    24.77   212.36  radiation_ [3]
2.3     156.65     4.43      897     4.94    56.61  smlr_ [7]
2.2     160.77     4.12      300    13.73    24.39  tke_full_ [13]
1.7     163.97     3.20      300    10.66    10.66  shear_prod_ [15]
1.5     166.79     2.82      300     9.40     9.40  rhs_ [16]
1.4     169.53     2.74      300     9.13     9.13  advect2_xy_ [17]
1.3     172.00     2.47      300     8.23    15.33  poisson_ [14]
1.2     174.27     2.27   480000     0.00     0.12  long_wave_ [4]
1.0     176.13     1.86      299     6.22   177.45  advect_scalar_ [6]
0.9     177.94     1.81      300     6.04     6.04  buoy_ [19]

...



Thanks for your 
attention!

Questions?



65
Parallel Computing: Stupid Compiler Tricks

OK Supercomputing Symposium, Tue Oct 6 2009

References
[1]  Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998, p. 173-191.
[2]  Ibid, p. 91-99.
[3]  Ibid, p. 146-157.
[4]  NAG f95 man page, version 5.1.
[5] Intel ifort man page, version 10.1.
[6]  Michael Wolfe, High Performance Compilers for Parallel Computing, 
Addison-Wesley Publishing Co., 1996.
[7] Kevin R. Wadleigh and Isom L. Crawford, Software Optimization for High 
Performance Computing, Prentice Hall PTR, 2000, pp. 14-15.


	Parallel Programming & Cluster Computing�Stupid Compiler Tricks
	Outline
	Dependency Analysis
	What Is Dependency Analysis?
	Control Dependencies
	Branch Dependency (F90)
	Branch Dependency (C)
	Loop Carried Dependency (F90)
	Loop Carried Dependency (C)
	Why Do We Care?
	Loop or Branch Dependency? (F)
	Loop or Branch Dependency? (C)
	Call Dependency Example (F90)
	Call Dependency Example (C)
	I/O Dependency (F90)
	I/O Dependency (C)
	Reductions Aren’t Dependencies
	Reductions Aren’t Dependencies
	Data Dependencies
	Output Dependencies
	Why Does Order Matter?
	Loop Dependency Example
	Loop Dep Example (cont’d)
	Loop Dependency Performance
	Stupid Compiler Tricks
	Stupid Compiler Tricks
	Compiler Design
	Tricks Compilers Play
	Scalar Optimizations
	Copy Propagation
	Constant Folding
	Dead Code Removal (F90)
	Dead Code Removal (C)
	Strength Reduction (F90)
	Strength Reduction (C)
	Common Subexpression Elimination
	Variable Renaming
	Loop Optimizations
	Hoisting Loop Invariant Code
	Unswitching
	Iteration Peeling
	Index Set Splitting
	Loop Interchange
	Unrolling
	Why Do Compilers Unroll?
	Loop Fusion
	Loop Fission
	To Fuse or to Fizz?
	Inlining
	Tricks You Can Play with Compilers
	The Joy of Compiler Options
	Example Compile Lines
	What Does the Compiler Do? #1
	What Does the Compiler Do? #2
	Arithmetic Operation Speeds
	Optimization Performance
	More Optimized Performance
	Profiling
	Profiling
	Subroutine Profiling
	Profiling Example
	Profiling Example (cont’d)
	Profiling Result
	Thanks for your attention!��Questions?
	References

